Hidden Markov Model for Speech Recognition
نویسندگان
چکیده
In this paper, a theoretical framework for Bayesian adaptive training of the parameters of discrete hidden Markov model (DHMM) and of semi-continuous HMM (SCHMM) with Gaussian mixture state observation densities is presented. In addition to formulating the forward-backward MAP (maximum a posterion’) and the segmental MAP algorithms for estimating the above HMM parameters, a computationally efficient segmental quasi-Bayes algorithm for estimating the state-specific mixture coefficients in SCHMM is developed. For estimating the parameters of the prior densities, a new empirical Bayes method based on the moment estimates is also proposed. The MAP algorithms and the prior parameter specification are directly applicable to training speaker adaptive HMM’s. Practical issues related to the use of the proposed techniques for HMM-based speaker adaptation are studied. The proposed MAP algorithms are shown to be effective especially in the cases in which the training or adaptation data are limited.
منابع مشابه
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملModel Building in Hidden Markov Models for Speech Recognition
This chapter considers the allocation of components to a multi-class Gaussian mixture model in the context of speech recognition using a hidden Markov model (HMM) [l, 21, 481. A hidden Markov model provides a model of a system where :..
متن کامل